1. 創(chuàng)業(yè)頭條
  2. 前沿領(lǐng)域
  3. 大數(shù)據(jù)
  4. 正文

智匯華云 ——AIOps之動(dòng)態(tài)閾值:SARIMA模型詳解

 2019-06-05 12:12  來(lái)源:互聯(lián)網(wǎng)  我來(lái)投稿 撤稿糾錯(cuò)

  域名預(yù)訂/競(jìng)價(jià),好“米”不錯(cuò)過(guò)

近年來(lái),IT運(yùn)維人工智能(AIOps)已成為了應(yīng)對(duì)IT系統(tǒng)與日俱增的復(fù)雜性的很好的解決方案。AIOps基于大數(shù)據(jù)、數(shù)據(jù)分析和機(jī)器學(xué)習(xí)來(lái)提供洞察力,并為管理現(xiàn)代基礎(chǔ)設(shè)施和軟件所需的任務(wù)提供更高水平的自動(dòng)化(不依賴(lài)于人類(lèi)操作員)。

因此,AIOps具有巨大的價(jià)值。展望未來(lái),AIOps將在IT團(tuán)隊(duì)提高效率方面發(fā)揮關(guān)鍵作用。它還會(huì)使應(yīng)用復(fù)雜的下一代技術(shù)成為可能,而且那些技術(shù)的復(fù)雜性是傳統(tǒng)解決方案無(wú)法勝任的。

華云數(shù)據(jù)“智匯華云”專(zhuān)欄將為您奉上“AIOps之動(dòng)態(tài)閾值—SARIMA模型詳解”。

通過(guò)使用數(shù)據(jù)收集、數(shù)據(jù)分析和機(jī)器學(xué)習(xí)相結(jié)合的完整AIOps解決方案,IT Ops團(tuán)隊(duì)可以支持以下幾個(gè)關(guān)鍵使用場(chǎng)景:

1.異常檢測(cè)。也許AIOps最基本的使用案例就是檢測(cè)數(shù)據(jù)中的異常,然后根據(jù)需要對(duì)它們做出反應(yīng)。

2.原因分析。AIOps還可幫助IT Ops團(tuán)隊(duì)自動(dòng)執(zhí)行根本原因分析,從而快速解決問(wèn)題。

3.預(yù)測(cè)。AIOps可以讓工具能對(duì)未來(lái)進(jìn)行自動(dòng)預(yù)測(cè),例如用戶(hù)流量在特定的時(shí)間點(diǎn)可能會(huì)怎樣的變化,然后做出相應(yīng)的反應(yīng)。

4.報(bào)警管理。AIOps在幫助IT Ops團(tuán)隊(duì)?wèi)?yīng)對(duì)他們必須處理的大量警報(bào),以支持正常的運(yùn)營(yíng)方面發(fā)揮著越來(lái)越重要的作用。

5.智能修復(fù)。AIOps通過(guò)自動(dòng)化工具驅(qū)動(dòng)閉環(huán)的故障修復(fù),而不依賴(lài)于運(yùn)維人員。

異常檢測(cè)

異常檢測(cè)以定位問(wèn)題并了解基礎(chǔ)架構(gòu)和應(yīng)用程序中的趨勢(shì)是AIOps的一個(gè)關(guān)鍵用例。檢測(cè)可以讓工具探測(cè)出異常行為(例如某個(gè)服務(wù)器響應(yīng)速度比平時(shí)慢,或受黑客攻擊而出現(xiàn)異常的網(wǎng)絡(luò)行為)并作出相應(yīng)的反饋。

在很多情況下,在現(xiàn)代軟件環(huán)境中進(jìn)程異常檢測(cè),對(duì)于AIOps而言還是特別具有挑戰(zhàn)性。因?yàn)樵谠S多情況下,并沒(méi)有通用的方法去定義合理的觸發(fā)條件。例如對(duì)于在整個(gè)環(huán)境中的網(wǎng)絡(luò)流量、內(nèi)存和存儲(chǔ)空間消耗而言,它們的波動(dòng)還是會(huì)很大的。那么活躍用戶(hù)量或應(yīng)用程序?qū)嵗彩侨绱?。在這些情況下進(jìn)行有效監(jiān)測(cè)需要AIOps能采用足夠智能的工具來(lái)設(shè)置動(dòng)態(tài)基線。動(dòng)態(tài)基線(閾值)為工具設(shè)置特定的情況下(例如一天中的時(shí)段和應(yīng)用程序的注冊(cè)用戶(hù)數(shù))正常活動(dòng)的范圍,然后檢測(cè)與動(dòng)態(tài)基線不匹配的數(shù)據(jù)或事件。

SARIMA模型

下面,就給大家講解一下我們這次用到的SARIMA模型,用于預(yù)測(cè)指標(biāo)動(dòng)態(tài)閾值,從而檢測(cè)異常。

SARIMA模型的全稱(chēng)是Seasonal Auto Regressive Integrated Moving Average,中文是周期性自回歸差分移動(dòng)平均。SARIMA模型是一種預(yù)測(cè)周期性的時(shí)間序列效果非常好的模型。SARIMA模型的目標(biāo)是描述數(shù)據(jù)的自相關(guān)性。要理解SARIMA模型,我們首先需要了解平穩(wěn)性的概念以及差分時(shí)間序列的技術(shù)。

平穩(wěn)性 stationarity

總的來(lái)說(shuō),一個(gè)時(shí)間序列,如果均值沒(méi)有系統(tǒng)性的變化(無(wú)趨勢(shì)),方差沒(méi)有系統(tǒng)變化,且消除了周期性變化,就稱(chēng)之為平穩(wěn)的。

顯然,圖(d), (h), (i)有一定的周期性,所以不平穩(wěn)。圖(a), (c), (e), (f), (i)有一定的趨勢(shì)性,并且圖(i)的方差在增長(zhǎng),所以不平穩(wěn)。只有圖(b)和(g)是平穩(wěn)的??赡艽蠹业谝谎劭吹綀D(g)覺(jué)得有周期性,其實(shí)是沒(méi)有的,因?yàn)檫@是猞猁的代際數(shù)量,在長(zhǎng)期來(lái)看,這并沒(méi)有周期性,所以這個(gè)時(shí)間序列是平穩(wěn)的。

差分 differencing

我們可以看到圖(a)是谷歌股價(jià)圖,這是不平穩(wěn)的。但圖(b)是股價(jià)每天的變化量,這是平穩(wěn)的。這就是一種讓不平穩(wěn)的時(shí)間序列變?yōu)槠椒€(wěn)時(shí)間序列的方法,計(jì)算連續(xù)時(shí)間數(shù)據(jù)點(diǎn)之間的差,這就是差分。

類(lèi)似于取對(duì)數(shù)log的方法可以使時(shí)間序列的方差變平穩(wěn),差分通過(guò)消除時(shí)間序列的變化量,從而使時(shí)間序列的平均值變平穩(wěn),來(lái)達(dá)到消除趨勢(shì)性和周期性。

自相關(guān)系數(shù) autocorrelation

自相關(guān)系數(shù)是用來(lái)測(cè)定時(shí)間序列的兩個(gè)時(shí)刻的值的線性關(guān)系。比如r1是測(cè)量yt和yt-1的關(guān)系,r2是測(cè)量yt和yt-2的關(guān)系。

T是時(shí)間序列的長(zhǎng)度,k是延遲lag

ACF(autocorrelation function)圖是一種非常有效的來(lái)判斷時(shí)間序列平穩(wěn)性的方法。

如果數(shù)據(jù)有趨勢(shì)性,那么對(duì)于較小的延遲,自相關(guān)性趨向于比較大并且為正。當(dāng)延遲增大時(shí),ACF會(huì)慢慢變小。

如果數(shù)據(jù)有周期性,對(duì)于周期性的延遲,自相關(guān)性會(huì)比較大一些。

如果數(shù)據(jù)既有周期性又有趨勢(shì)性,你就會(huì)看到兩者的結(jié)合。

這張圖是澳大利亞電力需求圖,可以看到這組數(shù)據(jù)既有周期性,又有趨勢(shì)性。

畫(huà)出ACF圖如下:

可以看到,因?yàn)橼厔?shì)性,當(dāng)延遲變大時(shí),ACF慢慢變小。因?yàn)橹芷谛?,圖像會(huì)有峰谷的感覺(jué)。

白噪聲 white noise

一個(gè)時(shí)間序列如果沒(méi)有任何自相關(guān)性就可以稱(chēng)為白噪聲。

這是一個(gè)白噪聲的例子,我們畫(huà)出它的ACF圖:

我們期望所有的ACF值接近于0,但因?yàn)橐恍╇S機(jī)變化,他們不可能正好等于0。對(duì)于白噪聲,我們期望95%的ACF突刺都在之間,T是時(shí)間序列的長(zhǎng)度。通常我們會(huì)畫(huà)出這些范圍,圖上用藍(lán)線表示。如果超過(guò)5%的突刺超出了這個(gè)范圍,這個(gè)時(shí)間序列就可能不是白噪聲。

隨機(jī)漫步模型 random walk

二次差分 second-order differencing

有時(shí)一次差分的數(shù)據(jù)看起來(lái)還是不平穩(wěn),這就需要二次差分來(lái)獲得一個(gè)平穩(wěn)的序列。

周期性差分 seasonal differencing

周期性差分是一個(gè)數(shù)據(jù)點(diǎn)和前一個(gè)周期同一時(shí)間的數(shù)據(jù)點(diǎn)的差。

這里的m是周期的數(shù)量。這也叫做”lag-m differences”。

單位根檢驗(yàn) unit root tests

決定是否需要差分可以用單位根檢驗(yàn)。我們這里使用KPSS test,在這個(gè)檢測(cè)中,零假設(shè)是數(shù)據(jù)是平穩(wěn)的,我們要找出零假設(shè)不為真的證據(jù)。得到比較小的p值,比如0.05,就可以認(rèn)為零假設(shè)不成立,數(shù)據(jù)不平穩(wěn),我們就需要對(duì)時(shí)間序列進(jìn)行差分。

后移符號(hào) backshift notation

當(dāng)我們?cè)谘芯繒r(shí)間序列延遲的時(shí)候,后移符號(hào)B非常有用。

B用在yt上,是把數(shù)據(jù)后移一個(gè)周期。兩次B運(yùn)算就是把數(shù)據(jù)后移兩個(gè)周期。

對(duì)于每月采集一次的數(shù)據(jù),如果我們想要去年同月的數(shù)據(jù),表示為

后移符號(hào)對(duì)于差分過(guò)程的表示非常方便,比如一次差分可以寫(xiě)成:

一次差分可以表示為(1-B),那么同樣,二次差分可以寫(xiě)成:

一般來(lái)說(shuō),d次差分可以寫(xiě)成 。

后移符號(hào)在組合差分的時(shí)候非常有用,比如,周期性的差分組合一次差分可以寫(xiě)成:

AR模型 Auto Regressive

在自回歸模型中,我們使用過(guò)去變量的線性組合來(lái)預(yù)測(cè)。自回歸表示這是對(duì)于自身變量的回歸。

p階AR模型可以寫(xiě)成:

這里是白噪聲,我們把這個(gè)叫做AR(p)模型,p階自回歸模型。

下圖展示了AR(1)模型和AR(2)模型:

#FormatImgID_15#

對(duì)于AR(1)模型:

我們通常會(huì)限制AR模型只用于平穩(wěn)的數(shù)據(jù),所以我們對(duì)參數(shù)有一些限制:

對(duì)于p>2,參數(shù)限制就非常復(fù)雜,我們可以用python的包來(lái)搞定。

MA模型 Moving Average

不像AR模型中使用過(guò)去的預(yù)測(cè)變量,MA模型使用過(guò)去的預(yù)測(cè)誤差。

是白噪聲。我們把這個(gè)叫做MA(q)模型,q階移動(dòng)平均模型。

下圖展示了MA(1)模型和MA(2)模型:

我們可以把任意平穩(wěn)的AR(p)模型寫(xiě)成MA()模型。比如,我們可以把AR(1)模型寫(xiě)成:

這是一個(gè)MA()模型。

如果我們給MA模型加一些限制,我們可以稱(chēng)MA模型是可逆的,我們可以把任意MA(q)模型寫(xiě)成AR()模型。

可逆性限制和平穩(wěn)性限制類(lèi)似:

對(duì)于q>2,參數(shù)限制就非常復(fù)雜,我們可以用python的包來(lái)搞定。

ARIMA模型 Auto Regressive Integrated Moving Average

如果我們組合AR和MA模型并差分,我們可以得到ARIMA模型。模型可以寫(xiě)成:

是差分過(guò)的序列,右側(cè)的預(yù)測(cè)器包含延遲yt和延遲誤差。我們叫這個(gè)ARIMA(p,d,q)模型:

p自回歸階數(shù)

d差分次數(shù)

q移動(dòng)平均階數(shù)

有一些特殊的ARIMA模型如下表:

白噪聲ARIMA(0,0,0)

隨機(jī)漫步ARIMA(0,1,0)

帶偏移量的隨機(jī)漫步ARIMA(0,1,0)帶常數(shù)

自回歸ARIMA(p,0,0)

移動(dòng)平均ARIMA(0,0,q)

用后移符號(hào),我們可以把ARIMA模型寫(xiě)成:

常數(shù)c在長(zhǎng)期預(yù)測(cè)中十分重要:

1.如果c=0并且d=0,長(zhǎng)期預(yù)測(cè)值會(huì)趨向于0

2.如果c=0并且d=1,長(zhǎng)期預(yù)測(cè)值會(huì)趨向于非零常數(shù)

3.如果c=0并且d=2,長(zhǎng)期預(yù)測(cè)值會(huì)變成一條直線

4.如果c0并且d=0,長(zhǎng)期預(yù)測(cè)值會(huì)趨向于數(shù)據(jù)的平均值

5.如果c0并且d=1,長(zhǎng)期預(yù)測(cè)值會(huì)變成一條直線

6.如果c0并且d=2,長(zhǎng)期預(yù)測(cè)值會(huì)變成二次拋物線

偏自相關(guān)系數(shù) partial autocorrelation

自相關(guān)系數(shù)測(cè)量了yt和yt-k的關(guān)系。如果yt和yt-1相關(guān),那么yt-1和yt-2肯定也相關(guān)。但這樣的話,yt和yt-2可能也相關(guān),僅僅只因?yàn)樗麄兌几鷜t-1相關(guān),而不是因?yàn)閥t-2中有新的信息可以用于預(yù)測(cè)yt。

為了解決這個(gè)問(wèn)題,我們可以使用偏自相關(guān)系數(shù)。這是在移除延遲1,2,3,…,k-1的影響后,測(cè)量yt和yt-k之間的關(guān)系。

如果差分過(guò)后的ACF和PACF圖滿(mǎn)足以下形式,數(shù)據(jù)可能是ARIMA(p,d,0)模型:

1.ACF是指數(shù)衰減或者正弦式的

2.在PACF中,在延遲p的地方有一個(gè)明顯的突刺,但后面沒(méi)有

如果差分過(guò)后的ACF和PACF圖滿(mǎn)足以下形式,數(shù)據(jù)可能是ARIMA(0,d,q)模型:

3.PACF是指數(shù)衰減或者正弦式的

4.在ACF中,在延遲q的地方有一個(gè)明顯的突刺,但后面沒(méi)有

最大似然估計(jì) maximum likelihood estimation

估算模型的時(shí)候,我們使用最大似然估計(jì)。已知某個(gè)隨機(jī)樣本滿(mǎn)足某種概率分布,但是其中具體的參數(shù)不清楚,參數(shù)估計(jì)就是通過(guò)若干次試驗(yàn),觀察其結(jié)果,利用結(jié)果推出參數(shù)的大概值。對(duì)于ARIMA模型,MLE通過(guò)最小化

來(lái)獲得。對(duì)于給定的p,d,q組合,我們可以用python最大化log likelihood來(lái)找到合適的p,d,q。

信息準(zhǔn)則 information criteria

赤池信息準(zhǔn)則(AIC)在選取參數(shù)時(shí)非常有用,可以寫(xiě)成:

其中L是數(shù)據(jù)的likelihood,如果c=0,k=0;如果c0,k=1。

修正赤池信息準(zhǔn)則(AICc)可以寫(xiě)成:

貝葉斯信息準(zhǔn)則(BIC)可以寫(xiě)成:

最小化AIC,AICc或者BIC可以得到較優(yōu)模型,我們偏向于選擇AIC。

pmdarima原理

pmdarima是一個(gè)python解決ARIMA和SARIMA模型的包,主要使用了Hyndman-Khandakar算法的變形,組合了單位根檢驗(yàn),最小化AICc和MLE。

用于自動(dòng)化ARIMA模型擬合的Hyndman-Khandakar算法

重復(fù)使用KPSS檢測(cè)決定差分次數(shù)

差分后最小化AICc來(lái)選取p和q的值,這種算法使用了階梯式搜索來(lái)遍歷模型空間,而不是考慮所有p和q的組合

擬合四個(gè)初始模型:

1.ARIMA(0,d,0)

2.ARIMA(2,d,2)

3.ARIMA(1,d,0)

4.ARIMA(0,d,1)

常數(shù)項(xiàng)會(huì)被考慮進(jìn)去除非d=2。如果d1,擬合額外的一個(gè)模型:

ARIMA(0,d,0)沒(méi)有常數(shù)項(xiàng)

在步驟a中最優(yōu)的模型(最小的AICc值)會(huì)被設(shè)置為當(dāng)前模型

微調(diào)當(dāng)前模型:

1.對(duì)p或/和q

2.加入/去除常數(shù)項(xiàng)c

新的最優(yōu)模型變成當(dāng)前模型

重復(fù)步驟c直到?jīng)]有更小的AICc

SARIMA模型 Seasonal Auto Regressive Integrated Moving Average

ARIMA模型的缺陷在于沒(méi)有考慮周期性,加入周期項(xiàng)可以得到SARIMA模型:

ARIMA (p,d,q) (P,D,Q)m

非周期性部分 周期性部分

m是每年的觀測(cè)數(shù)量。P,D,Q作為周期性參數(shù),p,d,q作為非周期性參數(shù)。

模型的周期性部分和非周期性部分很相似,但包括了周期后移。比如,ARIMA(1,1,1)(1,1,1)4對(duì)于季度數(shù)據(jù)(m=4)可以寫(xiě)成:

PACF和ACF圖中的周期性延遲可以看出AR模型或者M(jìn)A模型的周期性部分。

比如,SARIMA(0,0,0)(0,0,1)12模型會(huì)有以下特性:

1.ACF中延遲12有突刺,但沒(méi)有其他的明顯突刺

2.PACF的周期性延遲有指數(shù)衰減,比如在延遲12,24,36的地方

相似的,SARIMA(0,0,0)(1,0,0)12模型會(huì)有以下特性:

3.ACF的周期性延遲有指數(shù)衰減

4.PACF中延遲12有突刺

另外,根據(jù)簡(jiǎn)約性原則parsimony principle,為佳。

下面的例子可以很好的解釋模型擬合的過(guò)程:

例子:歐洲季度零售指數(shù)

這個(gè)例子是歐洲零售指數(shù)從1996到2011年的數(shù)據(jù),我們把它套進(jìn)SARIMA模型進(jìn)行預(yù)測(cè)。

這組數(shù)據(jù)明顯是不平穩(wěn)的,并有一些周期性,所以我們先進(jìn)行周期性差分,如下圖:

這看起來(lái)還是不平穩(wěn),我們?cè)龠M(jìn)行一次差分,如下圖:

ACF圖中延遲1的明顯突刺說(shuō)明有個(gè)非周期性的MA(1)部分,ACF圖中延遲4的明顯突刺說(shuō)明有個(gè)周期性MA(1)的部分。所以,我們從SARIMA(0,1,1)(0,1,1)4模型開(kāi)始,得到擬合模型的殘差,如下圖:

ACF和PACF都在延遲2有明顯突刺,延遲3的突刺也不小,所以模型應(yīng)該還有額外的非周期性部分。SARIMA(0,1,2)(0,1,1)4模型的AICc是74.36,SARIMA(0,1,3)(0,1,1)4模型的AICc是68.53。其他的AR參數(shù)都沒(méi)有更小的AICc值。所以,我們選擇SARIMA(0,1,3)(0,1,1)4,畫(huà)出該模型的殘差:

所有突刺都在合理范圍內(nèi),殘差值看起來(lái)像白噪聲了。Ljung-Box測(cè)試也顯示殘差沒(méi)有自相關(guān)性了。

然后,我們就可以用該模型進(jìn)行預(yù)測(cè)了:

圖中顯示了預(yù)測(cè)值以及80%和95%的置信區(qū)間。

指標(biāo)動(dòng)態(tài)閾值原理

我們已經(jīng)了解了SARIMA模型,并可以對(duì)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè)了。對(duì)于動(dòng)態(tài)閾值,我們首先獲取歷史數(shù)據(jù),對(duì)數(shù)據(jù)進(jìn)行處理,需要對(duì)缺失數(shù)據(jù)進(jìn)行一些填充。然后我們進(jìn)行SARIMA模型擬合,得出最優(yōu)模型之后,對(duì)未來(lái)指標(biāo)走勢(shì)進(jìn)行預(yù)測(cè),通過(guò)95%的置信區(qū)間生成閾值區(qū)間,如果指標(biāo)超出這個(gè)區(qū)間,我們認(rèn)為指標(biāo)異常,對(duì)用戶(hù)進(jìn)行告警。每天我們都會(huì)重復(fù)以上操作,讓模型擬合更加準(zhǔn)確,從而使動(dòng)態(tài)閾值功能日趨完善。

部分參考資料來(lái)源互聯(lián)網(wǎng)

申請(qǐng)創(chuàng)業(yè)報(bào)道,分享創(chuàng)業(yè)好點(diǎn)子。點(diǎn)擊此處,共同探討創(chuàng)業(yè)新機(jī)遇!

相關(guān)文章